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Abstract

The Goddard Space Flight Center (GSFC) Distributed Active Archive Center (DAAC)

has been operational for more than two years. Its mission is to support existing and pre-

Earth Observing System (EOS) Earth science datasets, facilitate the scientific research,

and test Earth Observing System Data and Information System (EOSDIS) concepts.

Over 550,000 files and documents have been archived, and more than six Terabytes have

been distributed to the scientific community.

Information about user request and file access patterns, and their impact on system

loading, is needed to optimize current operations and to plan for future archives (i.e.,

EOS-AM1). To facilitate the management of daily activities, the GSFC DAAC has

developed a data base system to track correspondence, requests, ingestion and

distribution. In addition, several log files which record transactions on Unitree are

maintained and periodically examined.

This study identifies some of the users' requests and file access patterns at the GSFC

DAAC during 1995. The analysis is limited to the subset of orders for which the data

files are under the control of the Hierarchical Storage Management (HSM) Unitree. For

example, orders on pre-mastered CD-ROMs, which account for a substantial proportion

of the total volume of data distributed, were excluded because they are not managed by

Unitree. The results show that most of the data volume ordered was for two data

products. The volume was also mostly made up of level 3 and 4 data and most of the

volume was distributed on 8mm and 4 mm tapes. In addition, most of the volume

ordered was for deliveries in North America although there was a significant world-wide

use. There was a wide range of request sizes in terms of volume and number of files

ordered. On an average 78.6 files were ordered per request. Using the data managed by

Unitree, several caching algorithms have been evaluated for both hit rate and the

overhead ("cost") associated with the movement of data from near-line devices to disks.

The algorithm called LRU/2 bin was found to be the best for this workload, but the STbin

algorithm also worked well.

I Theodore Johnson is supported by a grant from NASA, #10-77556.
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Introduction

On-line scientific archives are playing an increasingly important role in data-intensive

research. These archives hide the internal physical organization of the data and

automatically migrate files between near-line and on-line (disk) devices, making data

more easily accessible. However, building such a large-scale archive can be an expensive

proposition and system resources need to be carefully managed. To date, there has been

little published research that studies the performance of on-line scientific archives.

The EOSDIS archive is expected to have an ingest rate of Terabytes per day when fully

operational. This data will be available on-line for browse, order, and distribution.

Careful planning is needed to handle the very large volume of data, the very large number

of files, and the expected high user demands. Many studies have been made to predict

archive use, based on surveys of the expected users (for example, see the studies at

[ESDIS]). However, little empirical evidence has been collected.

In this paper, we first study some of the user-request patterns and their impact on the on

the overall system loading. Rather than examining all orders submitted at GSFC DAAC

in 1995, a subset has been selected that has direct impact on the archive controlled by

Unitree and the robotic devices. Not all data are stored under Unitree. For example, some

data was received on 8-mm tape and never ingested into Unitree because of the

substantial effort required. Orders for these tapes are usually simple tape copies and are

conducted "off-line" and do not affect Unitree. To satisfy some of the GSFC DAAC

users, a large farm of disks has been installed where data can be retrieved via anonymous

ftp. These anonymous ftp orders, off-line orders, as well as CD-ROM requests are not

used in the analysis.

There will also be presented an analysis of the GSFC DAAC Oracle data base that

contains information on the orders and the files requested, as well as the Unitree log files

that provides some insight on the mounts and stages operations. Based on the statistics

gathered in the analyses, we discuss issues related to the user request and file access

patterns, caching, clustering, migration, and system loading. Because the user access

pattern is related in part to the data set accessed and because of rapidly changing

technology, we do not claim that all future archives will have experiences similar to that

of the GSFC DAAC. However, we feel that this study will provide insight into the nature

of user access to on-line archives. We make comparisons to a previous study of the

NSSDC NDADS archive (see [Jo95]) to point out similarities and differences.

Previous Work

Several studies on the reference patterns to mass storage systems have been published.

Smith [Sm81d] analyzes file migration patterns in hierarchical storage management

system. This analysis was used to design several HSM caching algorithms [Sm81c].

Lawrie, Randal, and Burton [LRB82] compare the performance of several file caching

algorithms. Miller and Katz have made two studies on the I/O pattern of supercomputer

applications. In [MK91], they find that much of the I/O activity in a supercomputer

system is due to checkpointing, and thus is very bursty. They make the observation that
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much of the data that is written is never subsequentlyread,or is only read once. In
[MK93], theyanalyzefile migrationactivity. Theyfind aburstyreferencepattern,both in
systemloadandin referencesto afile. Additionalstudieshavebeenmadeby Jensenand
Reed[JR91], Strange[Str92], Arnold and Nelson [AN88], Ewing and Peskin [EP82],
Hendersonand Poston [HP89], Tarshishand Salmon [TS93], and by Thanhardtand
Harano [TH88]. However,all of thesestudiesapply to supercomputerenvironments,
which canbeexpectedto haveaccesspatternsdifferentfromthoseof ascientificarchive.

The accesspatternsto theNASA National SpaceScienceDataCenter's on-line archive,
NDADS, is studiedin [Jo95]. However,there aremany qualitative and quantitative
differencesbetweenthe NDADS archiveand the GSFCVersion 0 DAAC. We make
comparisonswheneverpossiblebetweenresultsin thisreportandtheresultsof [Jo95].

Access and Distribution Methods

The GSFC DAAC receives data from science projects such as Sea-viewing Wide Field-

of-view Sensor (SeawiFS), Coastal Zone Color Scanner (CZCS), Total Ozone Mapping

Spectrometer (TOMS), Pathfinder AVHRR (Advanced Very High Resolution

Radiometer) Land (PAL), Tiros Operational Spectrometer (TOVS), DAO (Data

Assimilation Office), and Upper Atmospheric Research Satellite (UARS). These data are

stored in a Mountain Gate Automated tape library system (RSS-600) using VHS tapes

and an 1803 Cygnet jukebox using 12" WORM optical media. By submitting requests to

the HSM (Unitree), the data can be retrieved to disks and made available to users.

In 1995, there were several ways by which a user could order data. A Graphic User

Interface (GUI) based on X-windows, allowed a user to browse, select and order

products. A Character User Interface (ChUI) was also available for users with VT100

terminals, but this interface has more limited capabilities. Orders could also be submitted

by calling the GSFC DAAC, or by sending a fax, letter or email.

Orders can be filled by sending the data copied to tape (8-mm, 4-mm, 9 track) to the users

or by transferring the requested data to a distribution staging area where the user has

several days to ftp the files to her own machine. A size limit has been placed on the

volume of data that can be transferred via ftp requests because of limited resources (disk

space and network). Because of the high overhead associated with the retrieval of small

files from the tertiary storage system, some specific datasets are also kept on a large farm

of disks (200 GB) and are accessible via anonymous ftp. Some data sets of high demand

have also been pre-mastered on CD-ROM for easy and quick distribution. As this study

is intended to illuminate the nature of on-line access to tertiary-storage based archives, we

limit the set of requests that we analyze to only those that access Unitree. In particular,

we exclude requests for pre-mastered CD-ROMS, and accesses to anonymous ftp data,

and internally generated requests. Internally generated requests includes testing, and do

not reflect the nature of on-line user access.

The GSFC Version 0 DAAC uses several avenues to distribute data. There are two types

of distribution orders: random orders and standing orders. The standing orders are

requests by users for some or all of the data as it is being received at the DAAC. The
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randomordersare interactiverequestsfor datathat hasbeenpreviouslyarchivedand is
availablefor order.

Log Files and Databases

To identify some of the characteristics of the requests, we examine the GSFC DAAC

Oracle data base, which contains information on the files and orders. The requests

studied are only for external users of the GSFC DAAC and therefore do not include the

test requests processed in 1995. The time of the requests used in this study corresponds

to the time when the orders were submitted to the GSFC DAAC and may not be

correlated with the time for processing and shipping. To analyze some of the system

load, we examine the Unitree log files.

Aggregated User Analysis

In this section, we analyze user requests by aggregating requests according to an

interesting classification. In particular we are trying to identify some patterns in the

orders in terms of volume, number of files per request, products, data level, interfaces

selected, and geographical locations of users.

In Figure 1, we aggregate user requests by month and data product. A data product is one

of the 7 categories: ACRIM, DAO, PAL, CZCS, TOMS, TOVS, and UARS. A given

data product can have multiple data sets (e.g. one per data level). The analysis shows

that most data volume is for one or two data products (DAO and Pathfinder AVHRR

Land (PAL) data). Figure 1 also shows that the volume ordered varies greatly between

months. The result is consistent with observations of NDADS. Different data products

have different average file sizes, so reporting volume alone tends to bias our results

towards favoring data products with large files. For a comparison, we plot the number of

files ordered each month by data product, in Figure 2.
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Figure 1. User volume ordered aggregated by data product.
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Figure 2. Files ordered aggregated by data product.

Next, we analyze requests according to data level (e.g. Level 1-4). The data that is

ingested into the archive is in a variety of higher level data sets. Level 1 data is satellite

data with corrections, while higher level data is binned and aggregated. Because of the

processing, there is more volume in the lower level products (L1-2) than in the higher

level products (L3-4). Figure 3 aggregates user volume by month and data level. As
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expected most of the volume of requested data is for Level 3 data, and there is a

substantial interest in Level 4 data.

Figure 4 aggregates volume ordered by month and by interface method. A substantial

percentage of the total volume requested was from the Character User Interface (ChUI).

The volume of standing orders is also important. Files that belong to standing orders are

transferred to a distribution staging area soon atter being ingested. This method of

distribution reduces the load imposed on Unitree because the standing orders files are

processed before the data is migrated to the near-line devices.

Volume ordered per month, 1995
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Figure 3. User volume ordered aggregated by data level.

12

158



Volume ordered per month, 1995 (by interface)
volume (Mbytes)
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Figure 4. User volume ordered aggregated by interface and month.

In Figure 5 and Figure 6, we aggregate the volume ordered by interface and by hour of

the day and day of the week, respectively. The volume ordered shows the typical pattern

-- most requests are made during normal working hours. These results are consistent with

observations of NDADS, although more requests are made to NDADS during weekends,

and few requests are made to NDADS during early morning hours.

Volume ordered by hour, 1995 (by interface)
volume (Mbytes)
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Figure 5. User volume ordered aggregated by interface and hour.
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Volume ordered by day, 1995 (by interface)
volume(Mbytes)
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Figure 6. User volume ordered aggregated by interface and hour of the day.

The requested data can be distributed either electronically (via ftp) or on one of several

different tape media. Figure 7 aggregates user requests by distribution media and by week

of the year. Most data is distributed by creating 4-MM or 8-MM tapes. There is almost

no request for 9-track tapes. The volume of ftp requests accounts for only a small portion

of the data distribution. We should point out that, due to resource constraints (network

and disk space), a limit has been placed on the volume of data that can be distributed via

ftp for a given request.

Volume ordered per week, 1995
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Figure 7. User volume ordered aggregated by media of distribution.
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Finally, weplot thevolumeof data requested by different regions of the world in Figure 8.

While most of the request volume came from North America, there is significant world-
wide use of the DAAC.
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5 6 7 8 9 10 11 12
month

Europe [] North America [] South America J
!

Figure 8. User volume ordered aggregated by region.

User Analysis

In this section, we analyze request size and user activity. The database records for every

file accessed; the file size, the data set that the file is a member of (a refinement of data

product), and a unique request ID. From this information, we can reconstruct the size of

a request. In Figure 9, we plot the volume per request, in Figure 10, we plot the files per

request. Figure 9 and Figure 10 are plotted on a log scale because of the very large range

of request sizes. The wide range of request sizes suggests that request servicing should be

aware of the size of the request and handle it accordingly.

Data in a data product can be divided into data sets, based on the type of the data (i.e.,

different levels, different sensors, etc.). In Figure 11, we plot the number of data sets

requested per order. The number of files per request and the number of data sets per

request are not correlated, as is shown in Figure 12. The average request in 1995 accessed

78.6 files and 1.6 data sets. These results show that most requests are clustered by the

data set, with the implication that archive media should store files of a single data set.

These results are consistent with our study of the NDADS archive.
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Volume per unique request id, 1995 (sorted)
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Figure 9, Volume per unique request id.
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Figure 10. Files per unique request id.
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Data sets per unique request id, 1995 (sorted)
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Figure 11. Data sets ordered per unique request id.
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Figure 12. Fifes vs. data sets in a request.

We can also aggregate requested files based on the user ID. In Figure 13, we plot the

number of files requested per unique user, in sorted order, and in Figure 14, we plot the

volume requested per unique user in 1995. The curve is non-linear even when plotted on

a logarithmic chart. We found that the top 20 users (of 442) requested 47% of all files

and 70% of the data volume. We note that top 20 users, rated by files requested, is not the

same as the top 20 users rated by volume requested. However, the correlation between
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files requested and volume requested is strong (the intersection between the two top-20

sets contains 12 members). A scatter plot of volume requested vs. files requested is

shown in Figure 15. These results are consistent with our study of the NDADS archive.

Files per user in 1995 (sorted)
files requested

10,000

1,000

I00

,o
1

o 10o 260 300 400
user

Figure 13. Files per unique user.
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Figure 14. Volume per unique user.
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volume vs. files per user
volume requested (Mbytes)
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Figure 15. Scatter plot of volume ordered and files ordered per user.

Caching

When a user requests a file, the file is first searched in the on-line disk space. If the file

is not located on the cache it is then fetched-from tertiary storage into secondary storage

and made available to the requester. The file typically has a minimum residency

requirement to give the requester time to access the file. While the file is disk-resident,

a second request for the file can be satisfied without fetching the file from tertiary

storage. These cache hits can reduce the load on the tertiary storage system, and also

improve response times. Fetching a file from the tertiary storage requires a tape to be

picked by a robotic device, mounted, the file searched on the tape and then read. All this

can take minutes before the file is ready to be read.

The archive systems should have enough disk storage to satisfy the minimum residency

requirement. However, files referenced within the minimum residency may be deleted if

the cache runs out of space. In this case, using a FIFO algorithm the oldest files are

deleted first. The buffer might run out of disk space necessary to satisfy minimum

residency due to a high request load, or due to a high ingest load (i.e., the ingested files

must be stored on-line until they can be migrated to tertiary storage). Although the ingest

load can interfere with the cache, we do not consider it in this study. However, the

relative performance of the algorithms will be the same with or without the ingest load.

If the cached files are large (an average size of 12.8 Mbytes in this study), then the time

to transfer referenced files not in the cache can be very long. We compute the cost of

servicing a reference string to be the weighted sum of the number of cache misses and the

number of bytes transferred. In these studies, we assumed that transferring 10 Mbytes is

equal to the cost of a cache miss (The time to load a media is much larger than the

transfer time, but this cost is amortized over all files loaded from the media). Let cost/be
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the costof transferring fileffrom the archive to on-line storage, and let Si be the size of

filer Then, the (normalized) value of costs is:

costs = 1 + Sf / 10 Mbytes

We can evaluate the benefit of using a cache by looking at the hit rate of the cache, or by
looking at the cost reduction of the cache. The cost reduction is the reduction of load on

tertiary storage caused by the cache. More formally, let the reference string (i.e., the

sequence of requests that pass though the cache) be r=_, f2, ..-, fro). Let Miss(f,) have the

value 1 iff was not in the cache when it was referenced, and 0 if it was in the cache.

Then, the cost of processing the reference string when using a cache, cost(cache) is:

cost(cache) = Y_rt_r cost * Miss(f,)

Let cost(toO be the cost of servicing r when no cache is used (i.e., Miss(f)=1 for every f).

Then the fraction of cost saved by using the cache is:

fraction of cost saved = 1-cost(cache)/cost(toO

A large body of caching literature exists when all cached objects are of the same size. The

Least Recently Used (LRU) replacement algorithm is widely recognized as having good

performance in practice. Caching objects of widely varying sizes is somewhat more

complicated. If one wants to minimize the number of cache misses, then it is much better

to choose large files than small files for replacement, because removing large files frees

up more space. Let the set of files in the cache be F. The general scheme is to assign to

each file f in F a weight, weighty, and chose for replacement the file with the largest

weight. Note that many files might need to be replaced on a cache miss.

The optimal replacement algorithm for variable size objects, with respect to cache misses,

is the GOPT algorithm [DS78]: For filef_F, let Nfbe the time until the next reference to

fand let Sfbe the size off Set weighty = Nf * Sf, and choose for replacement the filer in

F such that weightf is the largest.

The GOPT algorithm cannot be implemented (because it requires knowledge of future

events), but it can be approximated. The Space-Time Working Set (STWS) algorithm

[Sm81 c] approximates GOPT by substituting Pf the time since the last reference to f for

us.

While STWS can be implemented, it also requires a great deal of computation. For this

reason, STWS is often approximated by what we call the STbin algorithm [Mi94]: A file

is put into a bin based on its size. The files in a bin are sorted in a list using LRU. To

choose a file for replacement, look at the file at the tail of each bin and compute its

weight to be Pf * Sf. Choose for replacement the file with the largest weight.

The STbin algorithm does not account for the cost of transferring files, and may

discriminate too strongly against large files. We examined two algorithms that modify

the weight function to account for transfer costs. Let costybe cost incurred if filefmust be

loaded. The Costbin algorithm computes the weight of filefto be Pi * Sf/cost i , where

costf is defined above. Alternatively, we can use a non-linear function. The Alphabin
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algorithmcomputestheweightof filefto bePy * $7, where tx is a real number. Note that

setting ct=0 gives LRU and setting ct=l gives STbin.

Another method for incorporating size and last-reference time into victim selection is to

take a weighted sum. Let K s be the size factor and let K t be the time factor. Then, choose

for replacement the file with the smallest weight Ks * Sf + Kf * Pf. Since the file weight is

computed by a sum, we call the algorithm the SUM algorithm. It is used by several HSM

products.

Recent work in caching algorithms has produced statistical caching algorithms

[OOW93]. The LRU/2 algorithm chooses for replacement the object whose penultimate

reference (instead of most recent reference) is the furthest in the past. We adapt LRU/2 to

file caching by maintaining the bins in the ST-bin algorithm by LRU/2 instead of LRU.

We call the new algorithm LRU/2-bin.

HSM systems typically use a "watermark" technique to manage their staging disk. When

the staging disk space utilization exceeds a high watermark, files in the staging area are

migrated into tertiary storage until the staging disk utilization reaches a low watermark.

The motivation for the watermark technique is to write back dirty files in a single burst,

thus improving efficiency by exploiting write locality. The archive that we study contains

read-only files, so the watermarks should be set has high as possible for maximum

efficiency.

The minimum residence period is implemented by partitioning the cache into the regular

cache and the minimum residence cache. When a file is referenced, it is placed in the

minimum residency cache, where it remains until the minimum residence period has

passed. After the minimum residence period, the file is placed in the regular cache.

Normally, files in the minimum residence cache are not selected for replacement.

However, if the minimum residence cache size exceeds the total cache size, the oldest

files in the minimum period cache are chosen for replacement.

In our caching analysis, we assume a disk block size of 1024 bytes, and set a limit on the

number of disk blocks that are available for caching. We trigger replacement when

fetching a new file will cause the space limit to be exceeded, and we remove files until

the space limit will not be exceeded. For the STbin and LRU/2-bin algorithms, bin i

holds files that use between 2 i and 2i+l-1 blocks. We set the minimum residency period

to 1 day. We retrieved from the database a listing of all files requested in 19955, and

sorted the list of time of reference to create the reference string for our cache simulators.

We report both the hit rate and the reduction in cost due to running a aching algorithm

with a particular cache size.

We first test the STbin variants. In Figure 16, we plot the cost reduction as we vary a for

different cache sizes. The best setting of o_ is approximately 1/2. However, the

improvement over STbin is not large. Next, we compare Costbin against STbin in Figure

17. While Costbin has better performance than STbin, the difference is not large.

2 Subject to the restrictions listed in Section 1.2
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Cost reduction vs. alpha (STbin variant)
fraction of cost saved
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Figure 16. Finding the best value of(x for alphabin.
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Figure 17. Comparison of Costbin to STbin.

In Figure 18 we plot the fraction of cost saved for the LRU, LRU/2, SUM, and STbin

algorithms algorithms as we increase the cache size from 5 Gbytes to 60 Gbytes, and in

Figure 19 we plot the hit rate. The results show that the SThin and the LRU/2-bin

algorithms are significantly better than LRU, and somewhat better than the SUM

algorithm. The LRU/2-bin algorithm had somewhat better performance than the STbin
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algorithm. We note that STbin requires less CPU time for execution than either the

LRU/2 or the SUM algorithm, and the SUM algorithm requires careful tuning.

The results show that caching can be effective in reducing the load on the tertiary storage

device, in spite of the highly random nature of requests to an on-line archive. The GSFC

Version 0 DAAC currently uses a 60 Gbyte distribution cache. Simulation results

indicate that this size cache can provide a hit rate and cost savings of about 25%. The

Unitree logs indicate that the internal Unitree cache (32 Gbyte) had an additional hit rate

of 15.6%.

Cost reduction vs. cache size
fraction of cost saved
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Figure 18. Cache algorithm comparison (cost reduction).

hit rate

0.35

Hit rate vs. cache size

0.3

0.25

0.2

0.15

0.1

0.05

0

0 20 40 60 80

cache size (Gbytes)

SUM

LRU/2-bin

LRU

STbin

Figure 19. Cache algorithm comparison (hit rate).
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We ran another experiment to determine the effect of changing the minimum residence

period. Figure 20 shows the cost reduction of the STbin algorithm as the minimum

residence period is varied from 10 minutes to 2 days. We varied the cache size between

10 and 60 Gbytes. Increasing the minimum residence time decreases the cost reduction,
but the effect is small.

hit rate

0.3

0.25
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0,1

0.05

0

Hit rate vs. minimum residency (Stbin)

0 0.5 1 1.5 2
minimum residence time

90 Gbytes

60 Gbytes

40 Gbytes

20 Gbytes

Figure 20. Effect of changing the minimum residence time.

File Access Pattern Analysis

The success of caching depends upon the file access pattems. In this section we examine

some aspects of the access patterns. These results also have implications for archive
design.

Most files are accessed only a few times, limiting the maximum cache hit rate. Figure 21
plots distribution of the number of times a file was referenced in 1995. The fact that so

most files are referenced once limits the performance of statistical caching algorithms,

such as LRU/2-bin. We note further that only 12% of the 550,000 files in the archive

were requested during 1995. This result is consistent with observations of the NDADS
archive.
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Figure 21. Distribution of the number of references to a file in 1995.

The effectiveness of caching also depends upon the average time between references to a

file (the inter-reference time). In Figure 22 we plot the distribution of inter-reference

times during 1995. To generate this plot, we scanned through all file accesses and

searched for repeat accesses. Whenever a repeated reference was found, we incremented

a histogram based on the number of days since the last reference. The plot shows that

most repeat references occur shortly after an initial access, but that the inter-reference

time distribution has a long tail. The rise at the end of the tail represents all repeat

references with an inter-reference time of 186 days or larger. The average number of days

between an access to a file, given that the file is accessed at least twice in 1995 is 46.1

days. This result is essentially consistent with observations of the NDADS archive, which

has an average interreference time of 27.6 days. Both archives show a peak in the inter-

reference time near 0 days, and at 1 and 2 months after the previous reference. However,

these characteristics are stronger in the NDADS references. For both archives, the inter-

reference time distribution has a long tail (i.e., represented by the point at" 185+").

We found that many of the repeat references are due to the same user requesting a file for

a second time. This is shown in Figure 23, which plots the fraction of repeat requests that

are due to the same user, by time since last request. In total, 15.4% of the repeat

references in 1995 are due to the same user as had submitted the previous reference. By

contrast, 57% of the repeat references to NDADS are due to the same user. One

explanation for this difference is that most requests to the GSFC Version 0 DAAC are

submitted interactively, while most requests to NDADS are submitted by email. Network

and mailer delays compound archive delays to cause the user to suspect that the request

has been lost.
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Figure 22. Distribution of file inter-reference times. The point at ""185÷" represents the tail of the
distribution.
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Figure 23. Fraction of repeat references in which both the current and the previous reference are

submitted by the same user (binned on inter-reference time).

The performance of the STbin algorithm and its variants (Alphabin and Costbin) depends

on the distribution of file sizes. In Figure 24, we plot the file references binned on the

file sizes. Large files account for a large fraction of the accesses (the average size of a

requested file is 12.8 Mbytes). Caching large files can be effective if caching large files is

likely to result in a cache hit. In Figure 25, we plot the proportion of file references that
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are to files previously referenced,binned by file size. We also plot the average
interaccesstime. Large files have high reaccessrates,and for this reasonthe STbin
variantsimprovehit ratesaswell ascostreduction.
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Figure 24. Ordered files binned on file size.
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Figure 25. Repeat requests and interaceess times binned on file size.

The result that the average size of a requested file is 12.8 Mbytes was unexpected,

because the average size of a file in the archive is 1 Mbyte. The bias towards ordering

large files is due in part to the anonymous ftp archive, which serves small files. Users

prefer small files, but there is a high volume of data ordered for the DAO and PAL data
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products,both of which are storedin largefiles (an averageof 16.5Mbytes and 55.0
Mbytes,respectively).

In Figure26,weplot the "'age" of thefiles thatarereferenced(requested).Wecompute
this distribution as follows. For every file referencedin the observationperiod, we
computethefile ageto bethedifferencebetweenthereferencetime andthetime that the
file wasarchived. We bin thereferencedfilesbasedon file agein weeks. Becausethere
is a dependencebetweenthe time of referenceand the file age,we plot the file age
distribution for eachquarterof 1995. The peakin the ageof the referencedfiles in all
four chartscorrespondsto roughlythesamearchivingdates(wenotethatmanyfiles were
rearchivedin early 1995). Recentlyingesteddatadoesnot showanunusuallyhigh user
interest. One explanationfor this result is that new datais not immediatelyknown to
most users,and it is only after someadvertisement(newsletter,conference,word of
mouth) that the datamay be more frequentlyrequested. This result is consistentwith
observationsof theNDADS archive.
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Figure 26. Distribution of time between file archive and file reference.

Internal Activity

We conclude with some observations of the work performed by the archive. In Figure

27, we plot the number of Unitree media mounts per week, and the average number of

files transferred per mount (we obtained this data from the Unitree logs). The average
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numberof files transferredpermountfor all of 1995is 8.6. Unitreedoesnot distinguish
betweenmounts to read or write data. Consequently,the averagenumber of files
transferredincludesboth readandwrite operations.Migrationsareexecutedperiodically
(e.g.,onehour)to increasethe chanceof writing multiple files to the samemedia.Stage
operationsareperformedas soonas the resourcesareavailable(e.g., tapedrives). It
would have beeninterestingto derivethe averagenumberof files retrievedfor stage
operationsonly, andto correlatethe stageswith therequests.This could haveprovided
someinsight onhow well thestageoperationsarescheduledandhow clusteredthe files
requestedareon tapes.

Thereadermight notethatthis chartdoesnot correlatewell with the resultspresentedin
Figure 1throughFigure8. Therearetwo reasonsfor this discrepancy.First, the data in
Figure 1throughFigure8 is basedon timeanorderwasrequested,not time theorderwas
processedor distributed. Requestprocessingmight bedelayeddueto heavyloads,or to
handlevery largerequests(e.g.,seeFigure9).

As describedin the introduction, we have limited this study to only those orders that are

filled by "pulling" data from the mass storage system Unitree. However, the entire

activity for the DAAC is significantly higher (see Figure 28) because of the other

distribution methods used at GSFC DAAC that are not included in this study (e.g. CD-

ROM, anonymous ftp, off-line requests). It is interesting to note that the distribution

volume is much greater than the ingest volume.
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Figure 27. Unitree mounts per week and files per mount.
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Figure 28. Total archive activity, per month.

Conclusions

We have presented a study of the external requests made to the GSFC Version 0

Distributed Active Archive Center. The analysis examined only a subset of all requests

submitted. In particular orders for CD-ROMs, off-line requests and anonymous ftp are

excluded because they did not affect the performance of Unitree and the near-line

devices. A summary, of the results are:

• Most of the volume of the data ordered is concentrated on two of the seven data

products, and on higher level data.

• Most of user requests (by volume) were submitted via the Character-based User

Interface (ChUI).

• Most of the volume of data is distributed via tape.

• The requested volume varies greatly between months. Most of that volume is

submitted during normal working hours.

• There is a wide range of request sizes, and some requests are very large (100+

Gbytes).

• Most requests require service from a small number of data sets.

• A small set of hot users account for most of files and volume requested.

• LRU/2-bin is the best file caching algorithm on this workload, STbin also works well.

• The file interreference distribution has a peak at < 1 day, and a long tail.
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• Interest in data is not correlated with the time of archiving.
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